Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trop Med Infect Dis ; 8(8)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37624317

RESUMO

Long-lasting insecticidal nets (LLINs) are prone to reduction in insecticide content and physical strength due to repeated washes and usage. The significant loss to these features jeopardizes their protection against bites from malaria vectors. Insecticide washout is attributed to routine use, friction, and washing, while fabric damage is associated with routine use in households. To maintain coverage and cost-effectiveness, nets should maintain optimal bio-efficacy and physical strength for at least 3 years after distribution. In this study, the bio-efficacy and fabric strength of Olyset plus (OP) LLINs and Interceptor G2 (IG2), that were used for 3 years, were assessed in comparison to untreated and new unwashed counterparts. Both IG2 and OP LLINs (unused, laboratory-washed, and 36 months used) were able to induce significant mortality and blood feeding inhibition (BFI) to mosquitoes compared to the untreated nets. Significantly higher mortality was induced by unused IG2 LLIN and OP LLIN compared to their 36-month-old counterparts against both pyrethroid resistant and susceptible Anopheles gambiae sensu strito. The physical strength of the IG2 LLIN was higher than that of the Olyset Plus LLIN with a decreasing trend from unwashed, laboratory-washed to community usage (36 months old). Malaria control programs should consider bio-efficacy and physical integrity prior to an LLINs' procurement and replacement plan.

2.
Infect Dis Rep ; 14(6): 798-809, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36412740

RESUMO

Global malaria epidemiology has changed in the last decade with a substantial increase in cases and deaths being recorded. Tanzania accounts for about 4% of all cases and deaths reported in recent years. Several factors contribute to the resurgence of malaria, parasite resistance to antimalarials and mosquito resistance to insecticides being at the top of the list. The presence of sub-microscopic infections poses a significant challenge to malaria rapid diagnostic tests (mRDT). Our cross-sectional surveys in Handeni and Moshi, Tanzania assessed the effect of low parasite density on mRDT. Handeni had higher malaria prevalence by mRDT (39.6%), light microscopy (LM) (16.9%) and polymerase chain reaction (PCR) (18.5%), compared to Moshi with prevalence of 0.2%, 1.3% and 2.3%, respectively. A significant difference (p ˂ 0.001) in malaria prevalence by mRDT, LM and nested PCR was found among age groups. In comparison to all other groups, school-age children (5-15 years) had the highest prevalence of malaria. Our results show that mRDT may miss up to 6% of cases of malaria mainly due to low-density parasitemia when compared to LM and PCR. Routinely used mRDT will likely miss the sub-microscopic parasitemia which will ultimately contribute to the spread of malaria and hinder efforts of elimination.

3.
Front Public Health ; 4: 281, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066759

RESUMO

INTRODUCTION: Malaria prevalence has declined in the Kilimanjaro region of Tanzania over the past 10 years, particularly at lower altitudes. While this decline has been related to the scale-up of long-lasting insecticidal nets to achieve universal coverage targets, it has also been attributed to changes in environmental factors that are important for enabling and sustaining malaria transmission. OBJECTIVES: Herein, we apply spatial analytical approaches to investigate the impact of environmental and demographic changes, including changes in temperature, precipitation, land cover, and population density, on the range of the major malaria vector species Anopheles arabiensis in two districts of Tanzania, situated on the southern slope of Mount Kilimanjaro. These models are used to identify environmental changes that have occurred over a 10-year period and highlight the implications for malaria transmission in this highland region. METHODS: Entomological data were collected from the Hai and Lower Moshi districts of Tanzania in 2001-2004 and 2014-2015. Vector occurrence data were applied alongside satellite remote sensing indices of climate and land cover, and gridded population data, to develop species distribution models for An. arabiensis for the 2004 and 2014 periods using maximum entropy. Models were compared to assess the relative contribution of different environmental and demographic factors to observed trends in vector species distribution in lowland and highland areas. RESULTS: Changes in land cover were observed in addition to increased population densities, increased warm season temperature, and decreased wetness at low altitudes. The predicted area and extent of suitable habitat for An. arabiensis declined across the study area over the 10-year period, with notable contraction at lower altitudes, while species range in higher altitude zones expanded. Importantly, deforestation and warmer temperatures at higher altitudes may have created stable areas of suitable vector habitat in the highlands capable of sustaining malaria transmission. CONCLUSION: We show that environmental changes have had an important influence on the distribution of malaria vector species in a highland area of northern Tanzania. Highland areas may be at continued risk for sporadic malaria outbreaks despite the overall range contraction of principal vector species at lower altitudes, where malaria transmission remains at low intensity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...